

Directional Derivative 方向导数数(p915)

a surface: $z = f(x, y)$ a point: $P(x_0, y_0)$ a direction: $\vec{u} = \cos \theta \vec{i} + \sin \theta \vec{j}$

To find the desired slope along direction \vec{u} , reduce the problem to two dimensions by intersecting the surface with a vertical plane passing through the point P and parallel to \vec{u} as shown in the right Figure. This vertical plane intersects the surface to form a curve C . The slope of the surface at $(x_0, y_0, f(x_0, y_0))$ in the direction of \vec{u} is defined as the slope of the curve C at that point.

The vertical plane used to form C intersects the xy -plane in a line L represented by the parametric equations

$$\begin{cases} x = x_0 + t \cos \theta \\ y = y_0 + t \sin \theta \end{cases}$$

Point P, Q have corresponding points on the surface

$$\begin{array}{ll} (x_0, y_0, f(x_0, y_0)) & \text{Point above } P \\ (x, y, f(x, y)) & \text{Point above } Q \end{array}$$

We can get the slope of the secant line

$$\frac{f(x, y) - f(x_0, y_0)}{t} = \frac{f(x_0 + t \cos \theta, y_0 + t \sin \theta) - f(x_0, y_0)}{t}$$

Directional Derivative: can be obtained by letting t approach 0:

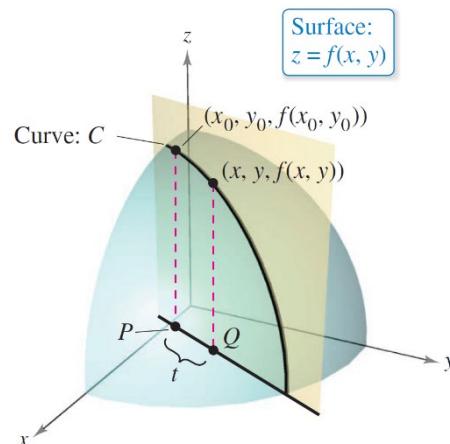
$$D_u f(x, y) = \lim_{t \rightarrow 0} \frac{f(x_0 + t \cos \theta, y_0 + t \sin \theta) - f(x_0, y_0)}{t}$$

If f is a differentiable function of x and y

$$D_u f(x, y) = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta$$

$$\vec{u} = \cos \theta \vec{i} + \sin \theta \vec{j}$$

Example 1: Find the directional derivative of $f(x, y) = 4 - x^2 - y^2/4$ at $(1, 2)$ in the direction of $\vec{u} = \cos(\pi/3) \vec{i} + \sin(\pi/3) \vec{j}$.

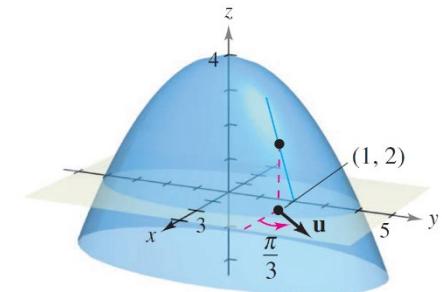


Solution:

$$\begin{cases} \frac{\partial f}{\partial x} = -2x & \text{: continuous} \\ \frac{\partial f}{\partial y} = -\frac{y}{2} & \text{: continuous} \\ f(x, y) & \text{: differentiable} \end{cases}$$

$$\begin{aligned} D_u f(x, y) &= \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta \\ &= (-2x) \cos \theta - \frac{y}{2} \sin \theta \\ &= (-2) \left(\frac{1}{2}\right) - \frac{2}{2} \left(\frac{\sqrt{3}}{2}\right) = -1 - \frac{\sqrt{3}}{2} \end{aligned}$$

Surface:
 $f(x, y) = 4 - x^2 - \frac{1}{4}y^2$



Example 2: Find the directional derivative of $f(x, y) = x^2 \sin 2y$ at $(1, \pi/2)$ in the direction of $\vec{v} = 3\vec{i} - 4\vec{j}$.

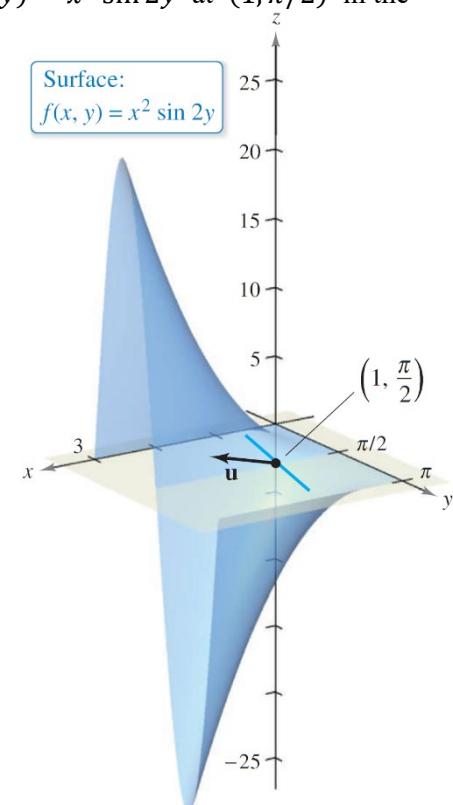
$$\begin{cases} \frac{\partial f}{\partial x} = 2x \sin 2y & \text{: continuous} \\ \frac{\partial f}{\partial y} = 2x^2 \cos 2y & \text{: continuous} \\ f(x, y) & \text{: differentiable} \end{cases}$$

$$\cos \theta = 3/5, \sin \theta = -4/5$$

$$\begin{aligned} D_u f(x, y) &= \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta \\ &= (2x \sin 2y) \cos \theta + (2x^2 \cos 2y) \sin \theta \end{aligned}$$

$$\begin{aligned} D_u f(1, \pi/2) &= 2 \sin \pi \left(\frac{3}{5}\right) \\ &+ (2 \cos \pi) \left(-\frac{4}{5}\right) = 8/5 \end{aligned}$$

Surface:
 $f(x, y) = x^2 \sin 2y$



The Gradient of a Function of Two Variables 梯度(p918)

Let $z = f(x, y)$ be a function of x and y such that $\partial z / \partial x$ and $\partial z / \partial y$ exist. Then the gradient of $f(x, y)$, denoted by $\vec{\nabla}f(x, y)$, is the vector

$$\text{grad } f(x, y) = \vec{\nabla}f(x, y) = \frac{\partial z}{\partial x} \vec{i} + \frac{\partial z}{\partial y} \vec{j}$$

The symbol $\vec{\nabla}f$ is read as “del f .”

$$\vec{\nabla} = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} \text{ 称为(二维)向量微分算子或 Nabla 算子}$$

Example 1: Find the Gradient of $f(x, y) = y \ln x + xy^2$ at the point $(1, 2)$.

Solution:

$$\frac{\partial f}{\partial x} = \frac{y}{x} + y^2$$

$$\frac{\partial f}{\partial y} = \ln x + 2xy$$

$$\vec{\nabla}f(x, y) = \frac{\partial z}{\partial x} \vec{i} + \frac{\partial z}{\partial y} \vec{j} = \left(\frac{y}{x} + y^2\right) \vec{i} + (\ln x + 2xy) \vec{j}$$

At the point $(1, 2)$

$$\vec{\nabla}f(1, 2) = \left(\frac{2}{1} + 2^2\right) \vec{i} + (\ln 1 + 2(1)(2)) \vec{j} = 6 \left(\frac{y}{x} + y^2\right) \vec{i} + (\ln x + 2xy) \vec{j} + 4 \vec{j}$$

Because the gradient of f is a vector, you can write the directional derivative of f in the direction of unit vector as

$$D_u f(x, y) = \vec{\nabla}f(x, y) \cdot (\cos \theta \vec{i} + \sin \theta \vec{j})$$

Alternative Form of the Directional Derivative

$$D_u f(x, y) = \vec{\nabla}f(x, y) \cdot \vec{u}$$

Properties of the Gradient

1. if $\vec{\nabla}f(x, y) = 0$, then $D_u f(x, y) = 0$ for all \vec{u}
2. The direction of maximum increase of f is given by $\vec{\nabla}f(x, y)$

$$\{D_u f(x, y)\}_{\max} = \|\vec{\nabla}f(x, y)\|$$

Example 2: The temperature in degrees Celsius on the surface of a metal plate is

$$T(x, y) = 20 - 4x^2 - y^2$$

where x and y are measured in centimeters. In what direction from $(2, -3)$ does the temperature increase most rapidly? What is this rate of increase?

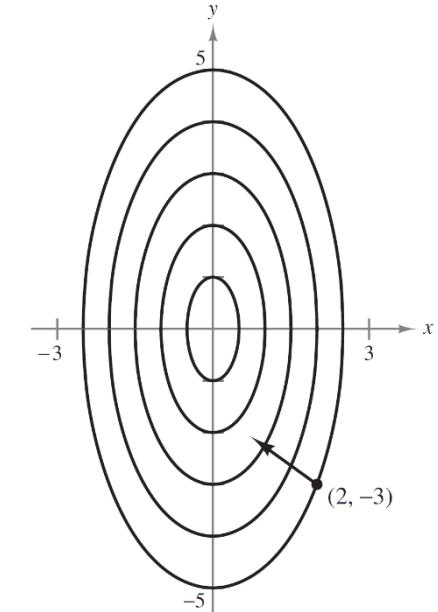
Solution: The gradient is

$$\vec{\nabla}T(x, y) = \frac{\partial T}{\partial x} \vec{i} + \frac{\partial T}{\partial y} \vec{j} = -8x \vec{i} - 2y \vec{j}$$

It follows that the direction of maximum increase is given by

$$\vec{\nabla}T(2, -3) = -16 \vec{i} + 6 \vec{j}$$

$$\|\vec{\nabla}T(2, -3)\| = \sqrt{256 + 36} = \sqrt{292}$$



Gradient Is Normal to Level Curves

If f is differentiable at (x_0, y_0) and $\vec{\nabla}f(x_0, y_0) \neq 0$ then $\vec{\nabla}f(x_0, y_0)$ is normal to the level curve through (x_0, y_0)

Example 2: A heat-seeking particle is located at the point $(2, -3)$ on a metal plate whose temperature at (x, y) is $T(x, y) = 20 - 4x^2 - y^2$. Find the path of the particle as it continuously moves in the direction of maximum temperature increase.

Solution: Let the path be represented by the position vector

$$\vec{r}(t) = x(t) \vec{i} + y(t) \vec{j}$$

A tangent vector at each point $(x(t), y(t))$ is given by

$$\frac{d}{dt} \vec{r}(t) = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j}$$

Because the particle seeks maximum temperature increase, the directions of $d\vec{r}(t)/dt$ and $\vec{\nabla}T(x, y) = -8x \vec{i} - 2y \vec{j}$ are the same at each point on the path. So,

$$-8x = k \frac{dx}{dt} \quad \text{and} \quad -2y = k \frac{dy}{dt}$$

Where k depends on t .

$$\frac{dt}{k} = \frac{dx}{-8x}, \quad \frac{dt}{k} = \frac{dy}{-2y} \Rightarrow \frac{dx}{-8x} = \frac{dy}{-2y} \Rightarrow x = \frac{1}{81} y^4$$